Design Considerations

Search

Key Notes:

Requirements and limitations of each component.

System-wide considerations

Power concerns for each device

Wiring concerns for each device

Each controller can power a specific number of ScramblePads, MATCH interfaces, and attached readers

Expansion boards are used to enhance or expand the controller’s capabilities.

When installed, the SNIB2 or SNIB3 expansion board enables an Mx series controller to be programmed, monitored, and controlled from a properly-configured IBM-compatible host PC running the Velocity software.

This document discusses the considerations you may face while designing and configuring Hirsch security components. These topics are discussed:

  • Requirements and limitations of each component

  • System-wide considerations

  • Power concerns for each device

  • Wiring concerns for each device

Hirsch by Identiv physical access control components are designed and manufactured with the highest quality standards. To ensure your physical access control system operates at its full potential, it is recommended that you select electric locks, door contacts, alarm sensors, cable, and other accessories and components of high quality.

Controllers


As a general rule, locate the Controller in a safe and secure area. It is often installed in electrical rooms, telephone equipment rooms, closets, or the security operations office. An environmentally managed room is not required if the temperature ranges don’t exceed the Controller’s specifications.

In addition to monitoring, reporting, and controlling a variety of devices, each controller can power a specific number of ScramblePads, MATCH interfaces, and attached readers. Other devices, such as interior motion sensors and some readers, may require power from a separate power supply.

  • Detailed information about the Mx controller (which can be configured to control either 2, 4, or 8 doors) is provided in “Mx Controller”.

  • Detailed information about the Mx-1 (and Mx-1-ME) controller is provided in “Mx-1 Controller”.

Typical Connections


The controller can connect to a number of input and output devices:

  • Typical Line Module Inputs

  • Typical Door Relay Outputs

  • ScramblePad/MATCH Inputs

Typical Line Module Inputs


The Line Module is an intermediate connection between Door Contacts (or Alarm Sensors), RQE devices, and the controller’s input terminal blocks.

Figure 1-7: Typical Line Module Input Connection

The recommended gauge and maximum distances for a cable between the Controller and
the Line Module are shown in Table 1-3:

Table 1-3: Controller to Line Module Wiring Recommendations in Feet (Meters)

Wire
(AWG)

DTLM/MELM 1
Feet Meters

DTLM/MELM 2
Feet Meters

DTLM/MELM 3
Feet Meters

Belden Ref.
No.

Wire
(AWG)

DTLM/MELM 1
Feet Meters

DTLM/MELM 2
Feet Meters

DTLM/MELM 3
Feet Meters

Belden Ref.
No.

20

5,200 (1,575)

2,500 (750)

900 (275)

8761

22

8500 (2,500)

4,500 (1,375)

1,200 (350)

8762

18

13,000 (3,975)

7,500 (2,275)

2,000 (600)

8760

16

20,000 (6,100)

11,500 (3,500)

3,100 (950)

8719

14

32,000 (9,750)

18,000 (5,500)

5,000 (1,525)

8720

12

50,000 (15,250)

28,000 (8,550)

8,000 (2,450)

8718

For wiring requirements between the Line Module and alarm devices, see “Line Modules” .

Typical Door Relay Outputs


The typical door relay output terminal block provides the connection between a door lock and the controller.

Figure 1-8: Typical Door Wiring Example

Cable runs for electric and magnetic locks must be separated by at least 6 inches (15cm) from ScramblePad and DTLM circuits, unless you use twisted-pair cable for all circuits.

All electronic locks induce electrical noise or interference on their control lines. These lines, when connected to the relays inside the controller, can interfere with normal controller function.

Surges, spikes, and noise produced by the lock can be suppressed by adding either an MOV or diode near the locking device. Some door locks include suppression. However, in many cases, you must install a Metal Oxide Varistor (MOV) or Diode at the lock. You can use an MOV with either AC or DC locks. Use a diode with DC locks only. The diode required is a 1A, 400V diode. Because a diode has a cathode and anode side, it is polarity-sensitive. Make sure to connect the cathode side of the diode to the positive (striped) side of the locking device.

When connecting to a door lock or some other output device requiring more than the Contact Ratings of the controller’s relays, an intermediate relay is required. The Relay Contact Ratings are shown in this table:

Table 1-4: Relay Contact Ratings

Relay Type

Ratings

Relay Type

Ratings

Door Relays

24V DC, 10A, resistive

Alarm/Control Relays

24V DC, 1A, resistive

The maximum length for lock power runs (in feet and meters) depends on this formula and the wire gauge table associated with it:

 

where:
W = Cable Impedance Multiplier
VL = Lock Voltage
IL = Lock Current

W is calculated using Table 1-5:

Table 1-5: Cable Impedance Multiplier

Wire Gauge
(AWG)

Cable Impedance Multiplier

Feet

Meters

22

5

1.52

20

9

2.74

18

14

4.27

16

22

6.70

14

35

10.67

The lock cable can be run in the same conduit with ScramblePad/MATCH circuits or line module input circuits, but the lock cable must always be a twisted pair.

For example, if the lock voltage is 24 VDC and the lock current is .125 Amps, and the lock is connected to the controller with 18 AWG cable, then the maximum allowed distance is:

 

ScramblePad/MATCH Inputs


The typical ScramblePad or MATCH input terminal block provides the connection between the controller and a ScramblePad or MATCH Interface.
An example of such a connection is shown in Figure 1-9.

Figure 1-9: ScramblePad/MATCH Inputs

Table 1-6 shows absolute maximum cable distances allowed in feet and meters between the controller and any one or two ScramblePad combinations according to wire gauge:

Table 1-6: Maximum Cable Distances Between Controller and ScramblePad

Cable
Gauge
(AWG)

Maximum Distance in feet (meters) from Controller to:

1 L

1 H

2 L

L + H

2 H

22

750 (228.6)

500 (152)

375 (114)

280 (85)

230 (70)

20

1,200 (366)*

800 (244)

600 (183)

460 (140)

375 (114)

18

1,800 (549)*

1,200 (366)*

935 (285)*

720 (219)

585 (178)

16

3,000 (914)*

1,875 (571)*

1,500 (457)*

1,150 (350)*

935 (285)*

In Table 1-6, the DS47L/DS47L-SPX keypads are abbreviated as L and the DS47L-HI (or weatherized version DS47L-HW) are abbreviated as H. The MATCH Interface is abbreviated as M. Items followed by asterisks (*) indicate cable capacitance must not exceed a total of 100,000 pƒ.

Use half of these distances when the controller is supplying power to a ScramblePad with an SPSH-1 heated back cover.

Table 1-7 shows absolute maximum cable distances in feet and meters between the controller and any MATCH and/or 1 or 2 ScramblePad combinations according to wire gauge:

Table 1-7: Maximum Cable Distances Between Controller and MATCH

Cable Gauge
(AWG)

Maximum Distance (feet/meters) from Controller to:

M

M+L

M+H

M+2L

M+L+H

M+H+H

22

1875 (572)*

535 (183)

375 (114)

310 (94)

250 (76)

205 (62)

20

3000 (914)*

860 (262)

600 (183)

500 (152)

400 (122)

330 (100)

18

4500 (1371)*

1340 (408)*

935 (285)

780 (238)

625 (190)

515 (157)

16

7500 (2286)*

2150 (655)*

1500 (457)*

1250 (381)*

1000 (305)

825 (251)

In Table 1-7, the DS47L/DS47L-SPX keypads are abbreviated as L and the DS47L-HI (or weatherized version DS47L-HW) are abbreviated as H. The MATCH Interface is abbreviated as M. Items followed by asterisks (*) indicate cable capacitance must not exceed a total of 100,000 pƒ.

Table 1-7 is applicable for MATCH-powered 5VDC readers, as allowed by the MATCH Interface’s 28V/5V switch power supply efficiency. A reader drawing 200 mA at 5VDC translates to only about 40 mA at the MATCH Interfaces’s 24VDC input side. Because the MATCH uses a switching power supply, the load presented by two 5VDC readers is no greater than that for one 5VDC reader. Therefore, this table is valid whether one or two readers are powered by the MATCH Interface.

Overall shield or individual shielded pairs are acceptable. Color coded cable – black, red,green, white – is recommended. Pair one, the black and red wires, provides power to the ScramblePad or the MATCH Interface; pair two provides data communications between the Controller and the ScramblePad or MATCH Interface.

If two ScramblePads are installed at the same door – one for entry and the other for exit – they can share the same cable run. Connect the second ScramblePad to the removable connector of the first ScramblePad. For longer cable runs, provide a local auxiliary power supply to the ScramblePad or MATCH Interface.

Expansion Board Options


Several expansion boards are available for Mx series controllers. Expansion boards are used to enhance or expand the controller’s capabilities.

The ribbon cable used to connect these boards to the Controller board is the EBIC5, which can link up to five expansion boards.
All expansion boards have the same dimensions and shipping weight:

Dimension: 6”H x 4.25”W x 0.75”D (15.2cm x 10.8cm x 1.9cm)
Shipping Weight: 1 lb (0.5 kg)

For detailed information about the setup and installation of expansion boards, see “Expansion Board Installation”.

Memory Expansion Boards


There are two different memory expansion boards available for Hirsch controllers: the MEB/CB64 and the MEB/CB128.

The MEB/CB64 supports 64,000 user records, expands the alarm and event buffers, or provides a combination of both records and buffers. This means that a portion of memory can be allocated to storing users while the remainder is used for buffering events. Normally, it takes twice as much space to store a user profile as it does to store an event (for example, the board can store two users or four events). Hirsch’s velocity security management program supports an option to allocate 20% of the board to alarm/event buffer usage. This option is irreversible.

The MEB/CB128 supports up to 128,000 users, expands the alarm and event buffers, or provides a combination of both users and buffers.

Install only one Memory Expansion Board type for code expansion in a controller at a time.

Figure 1-10: Memory Expansion Boards (MEB/CB128 and MEB/CB64)

The newer CCM V7.0 can diminish the number of events that an expansion board can successfully buffer, because the event string is up to four times longer. For example, a buffer that could comfortably store 4,000 events with the previous CCM (V6.6 and earlier) now buffers only 1,000 events using the V7.0 CCM.

CCM 7.0 now supports increased User and Alarm/Event capacity for up 132,000 user records. With CCM 7.0, the capacities of the Expansion Boards are additive, rather than in lieu of the base memory.

Older boards—the MEB/CE4, MEB/CE16, MEB/CE32, and MEB/BE—still work with CCM 7.0, but at reduced capacities. If a controller has one of these boards and is upgraded to CCM 7.0, it might also be necessary to upgrade the memory expansion boards. Upgrading memory boards can provide the added benefit of increasing expansion board capacity, because the Code Expansion (CE) and Buffer Expansion (BE) can now reside on a single board—the MEB/CB64 or the MEB/CB128.

Table 1-8 describes the maximum user capacities for each memory board type as a function of both IDF and CCM version. Note that your system’s actual capacity could be less, as explained in “Velocity Features that Reduce Available Memory”.

Table 1-8: Memory Board User Capacities

Maximum User
Capacities

CCM 6.6
IDFs 1, 2, 3

CCM 6.6
IDFs 4, 5, 6

CCM 6.6
IDF 7

CCM 7.0
All IDFs

Maximum User
Capacities

CCM 6.6
IDFs 1, 2, 3

CCM 6.6
IDFs 4, 5, 6

CCM 6.6
IDF 7

CCM 7.0
All IDFs

Base Controller

1,000

500

250

4,000

With CE4

4,000

2,000

1,000

5,000

With CE16

16,000

8,000

4,000

8,000

With CE32

32,000

16,000

8,000

20,000

With CB64

N/A

N/A

N/A

68,000

With CB128

N/A

N/A

N/A

132,000

The allocated user memory is the memory that is currently dedicated to users. The projected maximum user capacity is the amount of memory the CCM can auto-allocate to users as additional users are enrolled. 1024 is the base allocated user memory. If you add more than 1024 users, more memory is allocated in units of 256. So, if you add 1025 users, it increases the total memory to 1280; if you add 1281 users, it increases it to 1536, and so on.

There is a feature in Velocity that enables the operator to allocate 20% of MEB/CB expansion memory to the buffer. If the operator selects this setting, the host buffers increase the capacity and the projected maximum user capacity is slightly lower. The minimums are then 1560 buffer events and 1024 users. These values do not decrease, no matter how much extra memory is allocated.

For information about setup and installation of the memory expansion boards, see “Memory Expansion Boards Installation”.

Velocity Features that Reduce Available Memory


There are several places in this document which list the capacity of the various controllers and memory expansion boards to support user records or alarms and events. These capacities assume that you are running a version of Velocity which only uses data structures of a certain size. Your system’s capacity could be reduced by up to 50% when using any of the following features (which require larger data structures):

Feature

Initially Released in

Feature

Initially Released in

Timed anti-passback

Velocity 3.1 and CCM/CCMx firmware 7.4.25

Multiple access zones

Velocity 3.6 and CCM/CCMx firmware 7.5.28

PIV, PIV-I, or PIV-C cards

Velocity 3.6 SP2 and CCM/CCMx firmware 7.5.64

Alarm Expansion Boards (AEB8)


To expand the line module input capacity of the controller, use the Alarm Expansion Board (AEB8). These provide an additional 8 line module inputs per board.

Expansion line module inputs are used for a variety of security monitoring functions. In intrusion detection applications, they normally monitor interior motion sensors, perimeter doors and windows for forced entry or intrusion into a protected area; however, they are generally not employed for door access control applications.

Up to four AEB8s can be installed in a controller.

Figure 1-11: Sample AEB8 Board

The wiring and settings of the AEB8 are shown in Figure 1-12.

Figure 1-12: Alarm Expansion Board (AEB8)

As Figure 1-12 shows, the shield should be floated at the line module. Also, it is recommended that line module inputs be wired NC.

The AEB8 has four address jumpers. Each jumper allocates a range of eight addresses. This addressing scheme enables up to four AEB8's to reside in one controller. (For the M16, which has 16 inputs on the base controller board, two additional AEB8s can be added to the controller for a total of 32 inputs.)

For more about line module inputs, see “Request-To-Exit Devices (RQE)”. For more information about DTLM, MELM, and SBMS3, see “Line Modules”. For information about setup and installation of the AEB8, see “Alarm Expansion Board (AEB8) Installation” .

Relay Expansion Boards (REB8)


To expand the control relay capacity of the controller, use the Relay Expansion Board (REB8). This provides eight additional 2 Amp Form C dry relay outputs, rated for 24VDC. These relays are socketed and removable.

Figure 1-13: Relay Expansion Board (Physical View)

Up to five REB8s can be installed in an Mx or Mx-1-ME controller.
The wiring and settings of the REB8 are shown in Figure 1-14.

Figure 1-14: Relay Expansion Board (REB8)

Unlike the large heavy-duty door relays used to switch electric lock or strike power at 10 Amp loads, the expansion relays are normally used for signal level switching or pilot duty. Such switches, when closed, provide an input to a low-voltage sensing circuit like the one shown in Figure 1-15:

Figure 1-15: Alarm or Pilot Relay Circuit For Low-Power Switching

However, the switch can also be used to activate the coils of a remote heavy-duty relay like this:

Figure 1-16: Remote Relay Circuit for Heavy-Duty Output Device

The examples above connect across the NO and C terminals so no power is consumed when the device is in the normal state. This is the case in applications like elevator control where the control relays provide a contact closure to elevator control equipment only.

There is almost no distance limitation for the cable between the REB8’s terminal block and an isolation relay. If a powered device is being activated or energized, use the ScramblePad distance limitations (see Table 1-6 in section “ScramblePad/MATCH Inputs” as a good measure of distance capability. However, for accuracy, voltage drop calculations should be made for the specific load, cable, and distances involved, similar to lock calculations in section “Typical Door Relay Outputs”.

The REB8 is equipped with a Master Relay Override DIP switch. This switch can override all relays ON or all relays OFF. In the OFF position, relays cannot be activated by the controller until the Master Override OFF is returned to the normal operating position.

For information about the setup and installation of the REB8, see “Relay Expansion Board (REB8) Installation”.

RS-485 Readers Expansion Board (RREB)


The RS-485 Readers Expansion Board (RREB) is the component of Identiv’s end-to-end FICAM solution which provides eight independent RS-485 communication ports, for fast processing of PIV or PIV-I credentials at FICAM-compliant smart card readers (which are part of a physical access control system) using the bi-directional Open Supervised Device Protocol (OSDP). Each port is capable of supporting a door with both an entry reader and an exit reader.
The following figure shows an RREB, and identifies its connections.

Figure 1-17: Connections on the RS-485 Readers Expansion Board (RREB)

Government agencies transitioning from a traditional PACS to FICAM will need to replace their old readers and upgrade their version of the Velocity software, but the RREB (in conjunction with the SNIB3) enables them to reuse their existing wires and door controllers (including the M2, M8, and Mx series). The RREB:

  • provides the necessary connections to FICAM-compliant smart card readers (which are part of a physical access control system), for two-way communication with the SNIB3 communications expansion board

  • uses standard RS-485 wiring (two-pair stranded and twisted 18 AWG wires, with an overall shield) to readers

  • has the same form factor as other expansion boards, and draws power through the controller’s EBIC5 ribbon cable

Example Wiring Diagram for an RREB


The following figure shows an example wiring diagram for an RREB and a pair of Identiv’s uTrust TS Government Readers, which are the entry reader and the optional exit reader for a door. Note that:

  • The exit reader is wired through the entry reader for a door, so it shares an RS-485 port on the RREB.

  • On the exit reader, a jumper wire is needed between P1.1 and P1.4 (or between the orange and the black wires on the pigtail model) to designate that it is the exit reader.

  • All of these readers have a default OSDP Address of 0, which is the correct value when they are used as the entry reader for a door. If a door also requires an exit reader, then adding a jumper wire between P1.1 and P1.4 (or between the orange and the black wires on the pigtail model) changes the default OSDP Address to 1, which is the correct value for an exit reader. Be sure that you specify the correct OSDP
    Address when you configure each reader in a FICAM-capable version of the Velocity software.

  • The diagram shows power being supplied to the readers from the RREB. But depending on the types and quantity of readers being used, you might need to power some of the remotely located readers from an external power supply. For more information, see “Power Provided at the RREB’s RS-485 Terminal Blocks”.

Figure 1-18: Example Wiring Diagram for an RS-485 Readers Expansion Board (RREB)

The following table lists Identiv’s FICAM-capable High Frequency TS readers (which appear in the Readers > uTrust TouchSecure > Government FICAM category of the Product Catalog for Hirsch by Identiv Physical Access Control Solutions).

Mullion:

 

 

Model Number

Wiring

Ethernet?

Model Number

Wiring

Ethernet?