Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »

When installed, the SNIB, SNIB2, or SNIB3 expansion board enables a DIGI*TRAC or Mx controller to be programmed, monitored, and controlled from a properly-configured IBM-compatible host PC running the Velocity software. Communication is secured by Hirsch’s proprietary Hirsch Encrypted Standard (HES) protocol SCRAMBLENET network.

The SNIB3 is compatible with the SNIB2, but not with the original SNIB.

SNIB


The SNIB provides both RS-232 and RS-485 SCRAMBLE*NET ports. If you need to connect the host to the master SNIB via RS-485, you can only use the SNIB; otherwise, you have a choice of either SNIB or SNIB2. An example of the SNIB is shown in Figure 1-1.

When installed, the SNIB, SNIB2, or SNIB3 expansion board enables a DIGI*TRAC or Mx controller to be programmed, monitored, and controlled from a properly-configured IBM-compatible host PC running the Velocity software. Communication is secured by Hirsch’s proprietary Hirsch Encrypted Standard (HES) protocol SCRAMBLENET network.

  • An optically isolated RS-232 port is provided on the original SNIB and the SNIB2.

  • An optically isolated RS-485 port (required for multi-drop or long hardwired connections) is provided on the SNIB, the SNIB2, and the SNIB3.

  • An RJ-45 Ethernet port (which requires a host-to-master controller TCP/IP connection) is provided on the SNIB2 and the SNIB3.

The SNIB3 is compatible with the SNIB2, but not with the original SNIB. The M1N controller does not require the addition of a SNIB or SNIB2 because it already has SNIB circuitry integrated into its main board. The Mx controller’s main board includes SNIB2 functionality on a daughterboard, which can be removed to enable using a SNIB3.

RS-232 is best for modems or local PCs. (It is not available on the SNIB3.)

The following subsections provide installation instructions for the “SNIB”, the “SNIB2” , and the “SNIB3”.

SNIB Board


Figure 1-1: SNIB Board

An example of the possible SNIB connections is shown in Figure 2-23.

SNIB Connections


Figure 2-2: SNIB Connections

SNIB Cabling Distance


The power and data lines are fully isolated from the controller, providing immunity from transients and common-mode ground voltages between the SNIB-connected controller(s) and a host PC. Maximum SNIB cabling lengths are shown in Table 1-1:

Table 1-1: SNIB Cabling Distances

Port Type

Maximum Cable Length in feet (meters)

Ethernet (CAT5, CAT6)

328 (100)

RS-485

4000 (1220)

RS-232

50 (15)

For a single controller network, connect to the S*NET via either an RS-485 or RS-232 port. If connecting more than one controller on the network and the first controller is within 50 feet (15 meters) of the Host PC, connect the PC to the first controller via the RS- 232 connector and the rest of the controllers to the RS-485 S*NET connector on the first controller.

Alternatively, simply connect to the RS-485 connector and daisy-chain the wire to the multiple controllers. The M1N does not require a SNIB to network because SNIB circuitry with both RS-232 and RS-485 connectors is embedded on the controller board.

SNIB Design


When installed in a DIGI*TRAC Controller, the SNIB enables the Controller to be programmed, monitored, and controlled from a PC. For a one-controller network, you can connect to either the SNIB’s RS-485 connector (up to 4000 feet/1220 meters) or the RS-232 connector (up to 50 feet/15 meters).

If you are connecting to more than one controller on the network and the first controller is within 50 feet (15 meters) of the Host PC, you can connect the PC to the first controller via the RS-232 connector and the rest of the controllers to the RS-485 S*NET connector on the first controller. Alternatively, simply connect to the RS-485 connector and daisy-chain the wire to the multiple controllers.

A SNIB board must be installed in every controller you plan to connect to the network

Figure 1-3: The Original Secure Network Interface Board (SNIB)

Figure 1-4 provides examples of how the SNIB can be used to connect two controllers to a host PC using either an RS-232 or RS-485 connection.

Figure 1-4: Host PC to SNIB Wiring Examples

Installing The SNIB


This section includes installation instructions for the original SNIB.

SNIB Setup


The wiring and settings of the SNIB are shown in Figure 1-5.

Figure 1-5: Secure Network Interface Board (SNIB)

MD1 - 2

Because the M1N has integrated SNIB circuitry, the DIP switches are located on the controller itself, to either side of the network connections. (Refer to Figure 2-1 on page 2-4.)

Model 1N Design

The M1N has one heavy-duty door relay with associated line module input for supervision and door functions. This relay is capable of powering two keypads. The M1N also has three additional inputs for door contacts and alarm sensoring and four control relays to monitor and activate various relay circuits. Relay 4 can double as an alarm relay but it is not dedicated to that task.

In addition, the M1N includes an integrated SNIB for direct connection via either RS-232 or RS-485 to a SCRAMBLE*NET network, a keypad connector, and a printer port.

The M1N is shown in the below Figure:

Set these switches as you would a normal SNIB. There are no SNIB jumpers on the M1N.

The board has two jumpers, MD1 and MD2. Both are explained here:

In reality, changing
the MD1 jumpers does not appear to affect
the operation of the SNIB. The factory default works well for both modes.

There are also a number of DIP switches on the SNIB which can configure the board.

SW1/SW2

The last controller on any network cable run, or any single controller connected to a modem through the RS-232 port, must have its terminating resistors set to ON. To do this, set both SW1 and SW2 on switch bank S1 to ON.

SW1
SW2

OFF

This SNIB is not the last one on the network cable. (Default)

ON

This SNIB is the last one on the network cable.

SW3/SW4

The switch bank at S2 has 9 switches which configure a number of properties for the SNIB. SW3 determines the Modem Mode.

For M1N Rev. B controllers only: to enable modem mode, SW3-4 must both be ON.

SW3

OFF

Disable Modem Mode. There is no dial-up modem connected to this SNIB. (Default)

ON

Enable Modem Mode. There is a dial-up modem connected to this SNIB and you are using it as part of a Remote Site Management Network.The controller then supervises the modem and provides auto-answer.

SW4

Not Used.

SW5/SW6

SW5-6 determines the SNIB’s baud rate. The rates you can select depend on the SNIB version you have.

Older (pre-1998) SNIBs have a ‘16450’ or ‘16C450’ serial port. Look for ‘16450’ or ‘16C450’ on the big rectangular chip. This works with 2400 and 9600 bps and may work with 19200 bps as well (depending on the SNIB date). DIP switch settings for this are:

SW5

ON

OFF (default)

OFF

ON

ON

SW6

OFF

OFF (default)

ON

OFF

ON

Baud Rate

19,200

9600

2400

1200 (old)

300 (old)

Current production SNIBs have a ‘16550’ or ‘16C550’ serial port processor. Look for ‘16550’ or ‘16C550’ on the big rectangular chip. This configuration should work on all three baud rates.

SW5

ON

OFF (default)

OFF

ON

SW6

OFF

OFF (default)

ON

ON

Baud Rate

19,200

9600

2400

300

DIGI*TRAC 7.0 supports 19,200 bps SCRAMBLENET. This means that while 9600 and 2400 are supported by both the 1200 and 300 baud rates are supported by the older SNIB.

To do this, set the SNIB DIP switch 5 (the third one on the second set of dip switches) to ON, and set the Test Tool or equivalent host software (or Xbox) to 19200 bps

All Controllers on the network must have the same baud rate setting.

If you’re using an Xbox with your controllers, the SNIB baud rate on all controllers must match the XBox’s ‘Net Speed’ baud rate. Current production XBoxes only allow 2400 or 9600 bps baud rates. When changing baud rates, you must stop and restart all controllers on the network as well as all XBoxes.

SW7 - SW12

SW7-12 are used to set the Network Address. Each switch represents a binary value in this way:

Switch

7

8

9

10

11

12

Value

32

16

8

4

2

1

The only exception to this scheme is Network Address 64 where SW7-12 are all OFF. (This is currently not supported by SAM.) Table 1-2 provides a complete list of all network addresses and their corresponding switch setup:

Table 1-2: SNIB DIP Switch Network Address Settings

 See Table 1-2 SNIB DIP Switch Network Address Settings

Address

SW3

SW4

SW5

SW6

SW7

SW8

1

OFF

OFF

OFF

OFF

OFF

ON

2

OFF

OFF

OFF

OFF

ON

OFF

3

OFF

OFF

OFF

OFF

ON

ON

4

OFF

OFF

OFF

ON

OFF

OFF

5

OFF

OFF

OFF

ON

OFF

ON

6

OFF

OFF

OFF

ON

ON

OFF

7

OFF

OFF

OFF

ON

ON

ON

8

OFF

OFF

ON

OFF

OFF

OFF

9

OFF

OFF

ON

OFF

OFF

ON

10

OFF

OFF

ON

OFF

ON

OFF

11

OFF

OFF

ON

OFF

ON

ON

12

OFF

OFF

ON

ON

OFF

OFF

13

OFF

OFF

ON

ON

OFF

ON

14

OFF

OFF

ON

ON

ON

OFF

15

OFF

OFF

ON

ON

ON

ON

16

OFF

ON

OFF

OFF

OFF

OFF

17

OFF

ON

OFF

OFF

OFF

ON

18

OFF

ON

OFF

OFF

ON

OFF

19

OFF

ON

OFF

OFF

ON

ON

20

OFF

ON

OFF

ON

OFF

OFF

21

OFF

ON

OFF

ON

OFF

ON

22

OFF

ON

OFF

ON

ON

OFF

23

OFF

ON

OFF

ON

ON

ON

24

OFF

ON

ON

OFF

OFF

OFF

25

OFF

ON

ON

OFF

OFF

ON

26

OFF

ON

ON

OFF

ON

OFF

27

OFF

ON

ON

OFF

ON

ON

28

OFF

ON

ON

ON

OFF

OFF

29

OFF

ON

ON

ON

OFF

ON

30

OFF

ON

ON

ON

ON

OFF

31

OFF

ON

ON

ON

ON

ON

32

ON

OFF

OFF

OFF

OFF

OFF

33

ON

OFF

OFF

OFF

OFF

ON

34

ON

OFF

OFF

OFF

ON

OFF

35

ON

OFF

OFF

OFF

ON

ON

36

ON

OFF

OFF

ON

OFF

OFF

37

ON

OFF

OFF

ON

OFF

ON

38

ON

OFF

OFF

ON

ON

OFF

39

ON

OFF

OFF

ON

ON

ON

40

ON

OFF

ON

OFF

OFF

OFF

41

ON

OFF

ON

OFF

OFF

ON

42

ON

OFF

ON

OFF

ON

OFF

43

ON

OFF

ON

OFF

ON

ON

44

ON

OFF

ON

ON

OFF

OFF

45

ON

OFF

ON

ON

OFF

ON

46

ON

OFF

ON

ON

ON

OFF

47

ON

OFF

ON

ON

ON

ON

48

ON

ON

OFF

OFF

OFF

OFF

49

ON

ON

OFF

OFF

OFF

ON

50

ON

ON

OFF

OFF

ON

OFF

51

ON

ON

OFF

OFF

ON

ON

52

ON

ON

OFF

ON

OFF

OFF

53

ON

ON

OFF

ON

OFF

ON

54

ON

ON

OFF

ON

ON

OFF

55

ON

ON

OFF

ON

ON

ON

56

ON

ON

ON

OFF

OFF

OFF

57

ON

ON

ON

OFF

OFF

ON

58

ON

ON

ON

OFF

ON

OFF

59

ON

ON

ON

OFF

ON

ON

60

ON

ON

ON

ON

OFF

OFF

61

ON

ON

ON

ON

OFF

ON

62

ON

ON

ON

ON

ON

OFF

63

ON

ON

ON

ON

ON

ON

64a

OFF

OFF

OFF

OFF

OFF

OFF

a. Velocity software does not recognize Address 64.

SNIB Mounting


The SNIB should always be the top board installed on the standoffs. Install all other boards first (underneath the SNIB), then the SNIB.

To install the SNIB expansion board:

  1. Turn all system power off, remove connectors to the standby battery, then remove connectors to the AC power.

  2. Install the board on the supplied standoffs and connect the EBIC5 cable as described in “Connecting Expansion Boards”.

SNIB Wiring


To connect SCRAMBLE*NET to this board:

1.Turn all system power off, remove connectors to the standby battery, then remove connectors to the AC power.

2. Connect the wires on one end of the cable to the terminal block you require – either the RS-232 or S*NET (RS-485) port. Both RS-232 and RS-485 use SCRAMBLE*NET protocol. If necessary, you can remove the terminal blocks and replace them after you’ve wired them.

The wires are connected in this way:

For RS-485 S*NET Cabling:

Terminal

5

4

3

2

1

Wire

G

-RX

+RX

-TX

+TX

3.Connect the other end of the cable to the RS-485 of a NET*ADAPT, NET*MUX4, or to the serial port of the PC (with NAPC installed).

SNIB Pinout Information

The following tables provide pinout information on connections between the SNIB and a number of devices and connectors.

NAPC to First SNIB

NA1 to First SNIB

Pin on NAPC

Pin On SNIB

Pin on NA1

Pin on SNIB

1 RX+

1 TX+

1 RX+

1 TX+

2 RX–

2 TX–

2 RX–

2 TX–

3 TX+

3 RX+

3 TX+

3 RX+

4 TX–

4 RX–

4 TX–

4 RX–

5 G

5 G

5 G

5 G

XBox to First SNIB (RS-485)

XBox to First SNIB (RS-232)

Pin on NAPC

Pin On SNIB

Pin on XBox

Pin on SNIB

1 RX+

1 TX+

Unused

1 V

2 RX–

2 TX–

1 RX

2 TX

3 TX+

3 RX+

2 TX

3 RX

4 TX–

4 RX–

3 G

5 G

5 G

5 G

NET*MUX4 to SNIB (RS-485)

NET*MUX4 to SNIB (RS-232)

Pin on NET*MUX4

Pin On SNIB

Pin on NET*MUX4

Pin on SNIB

1 RX+

1 TX+

Unused

1 V

2 RX–

2 TX–

2 RX

2 TX

3 TX+

3 RX+

3 TX

3 RX

4 TX–

4 RX–

4 G

4 G

5 G

5 G

COM Port (DB25F) to First SNIB

COM Port (DB9F) to First SNIB

Pin on DB25F

Pin On SNIB

Pin on DB9F

Pin on SNIB

Unused

1 V

Unused

1 V

2 RX

2 TX

2 RX

2 TX

3 TX

3 RX

3 TX

3 RX

7 G

4 G

5 G

4 G

Modem (DB9M) to SNIB

Modem (DB25M) to SNIB

Pin on DB9M

Pin On SNIB

Pin on DB25M

Pin on SNIB

Unused

1 V

Unused

1 V

2 RX

2 TX

3 RX

2 TX

3 TX

3 RX

2 TX

3 RX

5 G

4 G

7 G

4 G

Wiring Between SNIB

Pin on SNIB

Pin On SNIB

1 TX+

1 TX+

2 TX–

2 TX–

3 RX+

3 RX+

4 RX–

4 RX–

5 G

5 G

SNIB Testing


After installing the board and connecting to a PC, you can test the SNIB using Host PC software.

SNIB2


The SNIB2 is a high-security encryption Secure Network Interface Board. The main components of the SNIB2 are shown in Figure 1-7.

SNIB2 Board


Figure 1-6: SNIB2 Board

SNIB2 Connections


The SNIB2 includes an RS-232 and RS-485 as well as an Ethernet port. In addition, SNIB2 supports full encryption from the host to the last downstream controller. The SNIB2 also offers XBox functionality with support for global I/O from the master SNIB2 downstream to all attached slave SNIB2s. The SNIB2 supports both an Ethernet or RS-232 connection between the host PC and the master SNIB2. Downstream connections from the master SNIB2 to slave SNIB2s must be RS-485.

The SNIB2 is a controller-resident communication board that enables a host PC running Velocity (version 2.6 SP2 or higher) to program, monitor, and control up to 63 SNIB2-resident controllers per SNIB2 Ethernet port. A NET*MUX4 is required whenever there are more than 16 controllers. Additional NET*MUX4s may be required to ensure that there are never more than 16 controllers per port.

Figure 1-7: SNIB2 Connections

for more information, see “SNIB2 Cabling”. Each connected controller must have its own SNIB2 (or SNIB3) board installed. The SNIB2 provides RS-485, RS-232, and 10/100BaseT Ethernet ports. The SNIB2 supports the XNET2 protocol.

An Mx controller’s main board provides built-in SNIB2 capability, and it includes an Ethernet connector and an RS-485 connector (but not an RS-232 connector).

Physically, the SNIB2 board differs from the original SNIB in that it has:

  • Three switch banks (SW1, SW2, and SW3)

  • An Ethernet RJ-45 connector with its accompanying daughterboard

  • Three pairs of status LEDs (see “Controller and SNIB2 LED Diagnostics”) With the SNIB2 board, a host PC running Velocity can program, monitor, and control up to 63 controllers with NET*MUX4 (as shown in Figure 1-8), or up to 16 without NET*MUX4. The SNIB2 provides a downstream/multi-drop RS-485 port as well as an upstream 10/100 Mbps Ethernet port and an RS-232 port for direct host connections (not dial-up).

Figure 1-8: SNIB2 to Controller Using a NET*MUX4

If required, you can add a second level of NET*MUX4s to create additional controller runs; however, Hirsch does not support more than two levels of NET*MUX4s.

Figure 1-9: NET*MUX4 Second Level Support

NET*MUX4 speeds are dictated by wire gauge and distance. We recommend using Cat5/Cat6 cable.

SNIB2 Design


The SNIB2 is a drop-in replacement for the original SNIB. It is intended for those installations that require high security over Ethernet.

The SNIB2’s major components are shown in Figure 1-10:

Figure 1-10: SNIB2 Call-Out

The SNIB2 is a controller-resident communication board that enables a host PC running Velocity to program, monitor, and control up to 63 SNIB2-resident controllers per SNIB2 Ethernet port. A NET*MUX4 is required whenever there are more than 16 controllers. Additional NET*MUX4s may be required to ensure that there are never more than 16 controllers on a single hard copper wire segment.

Figure 1-11: SNIB2 Controller Limits

For more information see, “SNIB2 Cabling”.

When using one or more NET*MUX4s, maximum SNIB2 speed is 9600 bps.

Each connected controller must have its own SNIB2 board installed. The SNIB2 provides an RS-485 port as well as a 10/100BaseT Ethernet port. The SNIB2 supports the XNET 2 protocol.

X*NET2 requires Velocity version 2.6 with Service Pack 1, or higher. CCM/CCMx firmware version 7.3.0 or higher is also required.

Physically, the SNIB2 board differs from the original SNIB in three obvious respects. The SNIB2 has:

  • Three switch banks (SW1, SW2, and SW3)

  • An Ethernet RJ-45 connector with its accompanying daughterboard

  • Three pairs of status LEDs

The SNIB2 provides these functional advantages over the SNIB:

  • AES-Rijndael encryption

  • Globalization functionality without an XBox

  • Higher serial communication speeds

  • Ethernet connectivity

Communications become less robust as baud rates increase, wire gauge decreases, and distances increase. Most tables in the DIGI*TRAC Systems Design and Installation Guide for wire gauge and distance are based on 9600 baud. At higher baud rates, maximum distances are decreased and minimum wire gauge is increased.

It may not be possible to implement the higher baud rates supported by the SNIB2 if you have long wire runs or small wire gauges. Higher baud rates are also more dependent on the number of twists per foot, so capacitance specifications must be strictly followed: total wire run per port is not to exceed 100,000 pf per foot.

To use the SNIB2, your controller must be running CCM/CCMx firmware version 7.3.08 or higher; use version 7.4.00 or higher if your computer has Velocity 3.0 or higher.

The Mx controller can be ordered with either SNIB2 or SNIB3 capability. The Mx-1 and Mx-1-ME controllers include SNIB3 capability.

The SNIB2’s Ethernet port provides high-speed TCP/IP communication over an Ethernet network between the host computer and the controller.

You can mix SNIBs and SNIB2s in your configuration; however, be aware that the speed of the network will be determined by the slowest of the network components.

The Ethernet connection enables communication between the controller with the master SNIB2 and host PC at 10/100BaseT. Speeds between the master SNIB2 and other connected downstream slave SNIB2s range up to 115200 bps.

A multidropped run of controllers is only as fast as its slowest component. Therefore, if you set a SNIB2 in the run to 19200, the maximum speed for any other SNIB2 in the run is limited to 19200 and addresses 1- 31.

A simple configuration connecting a single SNIB2-installed controller to the host might look like the example in Figure 1-12.

Figure 1-12: Host-to-Single SNIB2 Example

A more typical configuration that connects multiple controllers to the host, might look like the example in Figure 1-13:

Figure 1-13: Host-to-Multiple SNIB2s Configuration Example

For more information, see “SNIB2 Cabling”. Before the Velocity server can communicate over Ethernet with a SNIB2, you must first configure the SNIB2 through Velocity.

Whenever an Ethernet connection is employed between the host and the SNIB2, Velocity views the SNIB2 as an XNET port because the SNIB2 includes XBox functionality. The host communicates with the Ethernet-connected SNIB2 using AES-encrypted XNET 2.

Controller-to-controller speeds range from 9600 to 115200 bps. For each string of controllers, the first (master) SNIB2 with the Ethernet connection must be assigned the same address as the XNET port. No matter how many master SNIB2s are assigned Address 1, Velocity will be able to identify them appropriately using the SNIB2’s ROM ID and IP addresses assigned to them.

When the host is connected to a SNIB2 using Ethernet, Velocity views the first (master) SNIB2 as both a DIGITRAC controller and an XBox residing on an XNET port. Subsequent multidropped controllers in the sequence do not appear as XBox controllers.

You can also use the SNIB2 with the NET*MUX4. The NET*MUX4 consists of a single input for either RS-232 or RS-485 and four outputs to which a series of controllers or additional NET*MUX4s can be wired as shown in Figure 1-14:

Figure 1-14: Host-to-Multiple SNIB2s using NET*MUX4s

If required, you can add a second level of NET*MUX4s to create additional controller runs; however, Hirsch does not support more than two levels of NET*MUX4s.

Any installation with cascaded NET*MUX4s cannot use SNIB2 speeds higher than 9600 bps, no matter what cable or distance is involved.

For information about setting up and installing the SNIB2, refer to “Installing the SNIB2”.

Benefits of SNIB2


The SNIB2 provides these functional advantages over the original SNIB:

  • AES encryption

  • Ethernet connectivity (if required)

  • XBox functionality

  • Higher serial communication speeds

Each of these features is explained below.

(tick) AES Encryption
The SNIB2 employs AES-Rijndael asymmetric 128-bit block data encryption.

The National Institute of Standards and Technology (NIST) has awarded the SNIB2 AES Certificate #280.

(tick) Ethernet Connectivity
A standard RJ-45 Ethernet port is included on the SNIB2. This enables the connected controller installed with a SNIB2 to communicate with the server using TCP/IP over 10BaseT or 100BaseT Ethernet networks. This eliminates the need for external device servers for LAN connectivity.

(tick) XBox Functionality
The SNIB2 also incorporates full XBox gateway functionality, thereby eliminating the need for an XBox. This enables the SNIB2 to function as a gateway for up to 63 controllers (with inclusion of the NET*MUX4), and provides the ability to globalize certain features.

Globalizing is the task of connecting two or more controllers so credential user management and control zone information can be shared amongst all connected controllers.

Globalization can only be performed within a local XBox node. One SNIB2 acting as an XBox cannot talk to and share information with another XBox or another master SNIB2.

(tick) Higher Serial Communication Speeds
Communications between multidropped SNIB2s are now supported at speeds up to 115,200 bps with Cat5/Cat6 cable.

When using one or more NET*MUX4s, the maximum SNIB2 speed is limited to 9600 bps. When combining SNIBs and SNIB2s, the maximum speed is limited to the lower SNIB speed – that is, the lowest speed that all connected devices have in common.

Communications become less robust as baud rates increase, wire gauge decreases, and distances increase. Most tables for wire gauge and distance in this document are based on 9600 bps.

At higher baud rates, maximum distances are decreased and minimum wire gauge is increased. It may not be possible to implement the higher baud rates supported by the SNIB2 if you have long wire runs or small wire gauges.

To use the SNIB2, your controller must be running CCM/CCMx firmware version 7.3.08 or higher; use version 7.4.00 or higher if your computer has Velocity 3.0 or higher.

The Mx controller can be ordered with either SNIB2 or SNIB3 capability. The Mx-1 and Mx-1-ME controllers include SNIB3 capability.

For more information about setup and wiring of any SNIB board, see “Secure Network Interface Boards (SNIB2 or SNIB3)”. For installation instructions, see “Secure Network Interface Board (SNIB2 or SNIB3) Installation”.

Installing the SNIB2


This section includes setup and installation instructions for the SNIB2.

The first three steps of the following procedure only apply if you are replacing original SNIB boards with newer SNIB2 boards.

To install the SNIB2:

1. If necessary, download CCM 7.3.08 or later firmware to the required controllers.

For instructions about doing this, refer to “Firmware Updates > Updating CCM Firmware” in the main Velocity help.

2. Make sure each controller in the sequence shows the CCM version as 7.3.08 or later, and the BIOS as Version 7.2.19 or later.

If these version numbers do not appear, replace the controller’s CCM.

3. Remove the original SNIBs from each required controller.

We recommend removing the SNIBs controller-by-controller to ensure that each SNIB2 comes online successfully.

4. Run the required network cable to the controller(s) with the master SNIB2s.

The Ethernet cable you are connecting to each master SNIB2 should be connected to the Velocity host through a hub or switch.
5. Run RS-485 cable downstream from the master SNIB2.

The run between the master SNIB2 and the second SNIB2 should be wired according to the instructions in “SNIB2 Cabling”.

6.Set the DIP switches on each SNIB2, which vary depending on whether it is the master, one in the middle, or the last one.

In general, use the settings shown in the following tables.

Bank

Switch

Setting

Comments

Master SNIB2:

SW1

S1-S4

all ON

Indicates this is the first/master SNIB2 (or the last one) in the run

SW2

S1

OFF

The SNIB2 communicates with the Velocity host PC in XNET 2, using the encryption keys stored in memory

ON

Return the encryption keys to their default settings. If this switch is set when the SNIB2 powers up or reboots after a firmware upgrade, the keys reset. This switch should be turned off after the LED patterns begin to light.

Because this is the master SNIB2, you must also ‘Reset Encryption’ on the Velocity Port settings. All downstream units must have their encryption keys reset as well.

S2-S3

OFF

Normal operation.
(These switches should only be ON when resetting this SNIB2 to the factory default settings; see “Resetting the SNIB2 to its Factory Default Values”.

S4

ON

This SNIB2 is first in the sequence (the master) and is connected to the host via Ethernet or direct RS-232 connection (not dial-up). This SNIB2 controls polling.

SW3

S1
S2

OFF
ON

Set downstream RS-485 speed (38400 in this example)

S3-S8

--

Address as required (Address 1 shown)

Bank

Switch

Setting

Comments

Master SNIB2:

SW1

S1-S4

all OFF

Indicates this SNIB2 is in the middle of
the run

SW2

S1

OFF

The SNIB2 communicates with the Velocity host PC in XNET 2, using the encryption keys stored in memory

ON

Return the encryption keys to their default settings. If this switch is set when the SNIB2 powers up or reboots after a firmware upgrade, the keys reset. This switch should be turned off after the LED patterns begin to light.

All downstream units must have their encryption keys reset as well. Because this is a downstream unit, the master SNIB2 automatically detects that the keys have been reset.

S2-S3

OFF

Normal operation.
(These switches should only be ON when resetting this SNIB2 to the factory default settings; see “Resetting the SNIB2 to its Factory Default Values”.

S4

OFF

This SNIB2 is not the first/master (or you only have one controller)

SW3

S1
S2

OFF
ON

Set downstream RS-485 speed (38400 in this example)

S3-S8

--

Address as required (Address 2 shown)

Bank

Switch

Setting

Comments

Master SNIB2:

SW1

S1-S4

all ON

Indicates this is the last SNIB2 (or the
first/master) in the run

SW2

S1

OFF

The SNIB2 communicates with the Velocity host PC in XNET 2, using the encryption keys stored in memory

ON

Return the encryption keys to their default settings. If this switch is set when the SNIB2 powers up or reboots after a firmware upgrade, the keys reset. This switch should be turned off after the LED patterns begin to light. All downstream units must have their encryption keys reset as well. Because this is a downstream unit, the master SNIB2 automatically detects that the keys have been reset.

S2-S3

OFF

Normal operation.
(These switches should only be ON when resetting this SNIB2 to the factory default settings; see “Resetting the SNIB2 to its Factory Default Values”.)

S4

OFF

This SNIB2 is not the first/master (or you only have one controller)

SW3

S1
S2

OFF
ON

Set downstream RS-485 speed (38400 in this example)

S3-S8

--

Address as required (Address 3 shown)

Refer to “Setting Up the SNIB2” for more configuration options.

7. Install the new SNIB2s into their controllers. For detailed instructions, see “SNIB2 Mounting”.

Handle the SNIB2 with care. The board is very sensitive to static discharges. Observe the normal anti-static precautions by using grounded wrist straps and anti-static devices when installing the board.

8. Plug the RJ-45 connector from the cable into the Ethernet connector on the SNIB2.

9. Connect the RS-485 cables to their respective SNIB2.

10. Reconnect and power up the controllers.

11. At the host, open Velocity and configure the new SNIB2s.

For more about this, refer to the Velocity online help.

SNIB2 Mounting


To mount the SNIB2 expansion board:

1.Turn all system power off: remove the connector for the standby battery, and then disconnect the AC power connector or the power supply fuse.

2.Install the new SNIB2 board into the upper left corner of the enclosure using the supplied screws. If there are additional expansion boards to install, install them first using the supplied standoffs. Install the SNIB2 board last so that it is at the top of the stack, as shown in Figure 1-15. (This enables you to wire the board, configure its DIP switches, view the status LEDs, and more easily access the Ethernet connector.)

Figure 1-15: Putting the SNIB2 on top of the expansion boards stack

3. Connect the EBIC5 connector, as described in “Connecting Expansion Boards”.
4. Reconnect the AC power connector (or power supply fuse), then reconnect the standby battery connector. The controller board’s yellow test LED should light; the other lights go through a start up sequence. When the sequence is complete, the yellow test LED goes out and the other lights stabilize.
5. If required, connect an RJ-45 network cable to the SNIB2 Ethernet connector.

SNIB2 Cabling


The cable linking the first controller (master) to the second (subordinate) in a multidropped RS-485 series must crossover the RX± and TX± wires in this manner:

Figure 1-16: Master-to-Subordinate SNIB2 Wiring in Simple Array

At 9600 baud, the maximum allowed cable run between controllers is shown in the following table:

Connection

Maximum Distance

Total Max. Run from Master to Last Downstream SNIB2

4000 feet (1220 meters)

In general, communications become less robust as baud rates increase, wire gauge decreases, and distances increase. For this reason, it may not be possible to implement the higher baud rates supported by the SNIB2 if you have long wire runs or small wire gauges.

Higher baud rates are also more dependent on the number of twists per foot, so capacitance specifications must be strictly adhered to: total wire run per port is not to exceed 100,000 pf per foot.

We recommend using Cat5/Cat6 cable for your cable runs. Use 1 pair for the RX pair, 1 pair for the TX pair, and 1 conductor or pair for the ground connection.

Setting Up the SNIB2


Switch Bank 1 (SW1)

The SNIB2 includes three DIP switch banks. The first bank (SW1) and second bank (SW2) have four DIP switches each. The third bank (SW3) possesses eight DIP switches.

SNIB2s can be used throughout a multidrop run; however, you must specify whether a specific SNIB2 is connected to a controller that is in the beginning, middle, or at the end of a run.

To do this, set S1-S4 on switch bank SW1 to all ON or all OFF in this way:

S1-S4

OFF

This SNIB2 is in the middle of a multidrop sequence.

ON

This SNIB2 is either the first (master) or last (termination)
one in the multidrop sequence.

Switch Bank 2 (SW2)

The second switch bank at SW2 has 4 switches which configure such properties as the type of XNET protocol you are using, and the SNIB2’s location in the multidrop run.

S1

OFF

The SNIB2 communicates with the host PC in XNET 2,
using the encryption keys stored in memory.

ON

Return the encryption keys to their default settings. If this switch is set when the SNIB2 powers up or reboots after a firmware upgrade, the keys reset.
This switch should be turned off after the LED patterns
begin to light.
If this is the master SNIB2, you must also ‘Reset Encryption’ on the Velocity Port settings. All downstream units must have their encryption keys reset as well. If this is a downstream unit, the master SNIB2 automatically detects that the keys have been reset.

S2-S3

OFF

Normal operation.

ON

These switches should only be ON when resetting this
SNIB2 to the factory default settings; see “Resetting the
SNIB2 to its Factory Default Values”.

S4

OFF

Indicates this SNIB2 is NOT first in the multidrop
sequence, or you only have one controller.

ON

Indicates this SNIB2 is first in the sequence (master), and is connected to the host via Ethernet or direct RS-232 connection (not dial-up). This SNIB2 controls polling.

Switch Bank 3 (SW3)

Switch bank SW3 is used to specify the SNIB2 speed (S1-S2) and the SNIB2 address (S3-S8). DIP switch settings for this are:

S1

OFF

OFF

ON

ON

S2

OFF

ON

OFF

ON

Baud Rate

9,600

38,400

57,600

115,200

This controls the baud rate for the RS-485 multi-drop line and the RS-232 connection. 57,600 and 115,200 bps are only available if your RS-485 cables are made from Cat5/Cat6 data grade wire. These speeds are not recommended for installations using:

  • RS-232 connections to host

  • 18-gauge to 22-gauge shielded twisted-pair cable

  • NET*MUX4s

  • Mixed SNIBs/SNIB2s

Baud rates only apply to the SNIB2’s RS-485 and RS-232 ports. The SNIB2’s Ethernet port is used for host-to-controller connections and runs at 10/100 BaseT speeds. All SNIBs/SNIB2s in an RS-485 multi-drop sequence must be set to the same speed, and if connected to a host PC using RS-232 direct connection, the same speed must also be used. For example, if one SNIB2 in the sequence is set to 9600, all other SNIBs and SNIB2s (and the RS-232 host connection, if used) must be set to the same baud rate.

The remaining DIP switches on SW3 set the SNIB2’s address:

Table 1-21: SNIB2 DIP Switch Address Settings

 see Table SNIB2 DIP Switch Address Settings

Address

SW3

SW4

SW5

SW6

SW7

SW8

1

OFF

OFF

OFF

OFF

OFF

ON

2

OFF

OFF

OFF

OFF

ON

OFF

3

OFF

OFF

OFF

OFF

ON

ON

4

OFF

OFF

OFF

ON

OFF

OFF

5

OFF

OFF

OFF

ON

OFF

ON

6

OFF

OFF

OFF

ON

ON

OFF

7

OFF

OFF

OFF

ON

ON

ON

8

OFF

OFF

ON

OFF

OFF

OFF

9

OFF

OFF

ON

OFF

OFF

ON

10

OFF

OFF

ON

OFF

ON

OFF

11

OFF

OFF

ON

OFF

ON

ON

12

OFF

OFF

ON

ON

OFF

OFF

13

OFF

OFF

ON

ON

OFF

ON

14

OFF

OFF

ON

ON

ON

OFF

15

OFF

OFF

ON

ON

ON

ON

16

OFF

ON

OFF

OFF

OFF

OFF

17

OFF

ON

OFF

OFF

OFF

ON

18

OFF

ON

OFF

OFF

ON

OFF

19

OFF

ON

OFF

OFF

ON

ON

20

OFF

ON

OFF

ON

OFF

OFF

21

OFF

ON

OFF

ON

OFF

ON

22

OFF

ON

OFF

ON

ON

OFF

23

OFF

ON

OFF

ON

ON

ON

24

OFF

ON

ON

OFF

OFF

OFF

25

OFF

ON

ON

OFF

OFF

ON

26

OFF

ON

ON

OFF

ON

OFF

27

OFF

ON

ON

OFF

ON

ON

28

OFF

ON

ON

ON

OFF

OFF

29

OFF

ON

ON

ON

OFF

ON

30

OFF

ON

ON

ON

ON

OFF

31

OFF

ON

ON

ON

ON

ON

32

ON

OFF

OFF

OFF

OFF

OFF

33

ON

OFF

OFF

OFF

OFF

ON

34

ON

OFF

OFF

OFF

ON

OFF

35

ON

OFF

OFF

OFF

ON

ON

36

ON

OFF

OFF

ON

OFF

OFF

37

ON

OFF

OFF

ON

OFF

ON

38

ON

OFF

OFF

ON

ON

OFF

39

ON

OFF

OFF

ON

ON

ON

40

ON

OFF

ON

OFF

OFF

OFF

41

ON

OFF

ON

OFF

OFF

ON

42

ON

OFF

ON

OFF

ON

OFF

43

ON

OFF

ON

OFF

ON

ON

44

ON

OFF

ON

ON

OFF

OFF

45

ON

OFF

ON

ON

OFF

ON

46

ON

OFF

ON

ON

ON

OFF

47

ON

OFF

ON

ON

ON

ON

48

ON

ON

OFF

OFF

OFF

OFF

49

ON

ON

OFF

OFF

OFF

ON

50

ON

ON

OFF

OFF

ON

OFF

51

ON

ON

OFF

OFF

ON

ON

52

ON

ON

OFF

ON

OFF

OFF

53

ON

ON

OFF

ON

OFF

ON

54

ON

ON

OFF

ON

ON

OFF

55

ON

ON

OFF

ON

ON

ON

56

ON

ON

ON

OFF

OFF

OFF

57

ON

ON

ON

OFF

OFF

ON

58

ON

ON

ON

OFF

ON

OFF

59

ON

ON

ON

OFF

ON

ON

60

ON

ON

ON

ON

OFF

OFF

61

ON

ON

ON

ON

OFF

ON

62

ON

ON

ON

ON

ON

OFF

63

ON

ON

ON

ON

ON

ON

SNIB2 Network Configuration Options Overview


The SNIB2’s Ethernet port provides high-speed TCP/IP communication over an Ethernet network between the host computer and the controller as shown in Figure 1-17.

Figure 1-17: SNIB2 Ethernet Connection Using XNET2

In a multiple controller sequence, the configuration can look like Figure 1-18.

Figure 1-18: Multiple Controller Sequence Using SNIB2

This enables communication between the controller with the master SNIB2 and host PC at 10/100BaseT. Speeds between the master SNIB2 and other connected downstreamSNIB2s range up to 115200 bps when using Cat5/Cat6 cable. Speeds between a master SNIB2 and downstream SNIBs are limited by the top speed of the older SNIBs (38400 bps).

Higher baud rates are also more dependent on the number of twists per foot, so capacitance specifications must be strictly followed: total wire run per port is not to exceed 100,000 pf per foot.

Before the Velocity server can communicate over Ethernet with a SNIB2, you must first configure the SNIB2 through Velocity. For more about this, refer to “Configuring a Master SNIB2 in a Different Subnet”.

Whenever an Ethernet connection is employed between the host and the SNIB2, Velocity views the SNIB2 as an XNET port because the SNIB2 includes XBox functionality. The host communicates with the Ethernet-connected SNIB2 using AES-encrypted XNET 2.

Controller-to-controller speeds range from 9600 to 115200 bps. For each string of controllers, the first (master) SNIB2 with the Ethernet connection must be assigned the same address as the XBox port.

For more about this, refer to “Configuring a Master SNIB2 in a Different Subnet”.

When the host is connected to a SNIB2 using Ethernet, Velocity views the first (master) SNIB2 as both a DIGI*TRAC controller and an XBox residing on an XNET port. Subsequent multidropped controllers in the sequence do not appear as XBox controllers.

SNIB2 Network Configuration Options


Whenever an Ethernet connection is employed between the host and the SNIB2, Velocity views the SNIB2 as an XNET port because the SNIB2 includes XBox functionality. The host communicates with the Ethernet-connected SNIB2 using AES-encrypted XNET 2.

Controller-to-controller speeds range from 9600 to 115200 bps. For each string of controllers, the first (master) SNIB2 with the Ethernet connection must be assigned the same address as the XBox port.

When the host is connected to a SNIB2 using Ethernet, Velocity views the first (master) SNIB2 as both a controller and an XBox residing on an XNET port. Subsequent multidropped controllers in the sequence do not appear as XBox controllers.

You can also use the SNIB2 with the NET*MUX4. The NET*MUX4 consists of a single input for either RS-232 or RS-485 and four outputs to which a series of controllers or additional NET*MUX4s can be wired, as shown in the following illustration:

For more information, see “SNIB2 Cabling”. If required, you can add a second level of NET*MUX4s to create additional controller runs; however, Hirsch does not support more than two levels of NET*MUX4s.

NET*MUX4 speeds are dictated by wire gauge and distance. We recommend using Cat5/ Cat6 cable.

Deploying SNIB2


Each master SNIB2 (Velocity port) must be assigned a unique IP address so it can communicate with Velocity on the host PC. Depending on the network location of the master SNIB2, this is accomplished in one of two ways:

What is a subnet? Put simply, a subnet is any group of PCs and other devices, such as printers and scanners, connected by network cable to a network router. Anything behind the router is considered part of the subnet. Anything beyond this router is not part of the subnet.

In the preceding illustration, the master SNIB2 and controller labeled 1 is located in the same subnet as the host PC (Subnet A). This SNIB2 can therefore be configured using Velocity; however, the master SNIB2 and controller labeled 2 is located behind a different router, in a different subnet (Subnet B), and must be configured using the SNIB2 Configuration Utility.

Any number of computers and devices can be behind a single router, but for reasons of security and speed, a company network often incorporates many routers. It isn’t uncommon to find that each department within a company has its own router. Routers not only find the quickest way to ferry packets of information between two points, but also could serve as a rudimentary firewall against potential intrusion.

Configuring a Master SNIB2 on the Same Subnet


When a master SNIB2 is connected via Ethernet to the host PC sharing the same subnet, configure and assign a new IP address through the Velocity port properties dialog.

To do this:

1.Open Velocity.

2. In the System Tree pane, click and expand the DIGI*TRAC Configuration system folder, 📁 .

Three port folders are currently available: SNET, XNET, or Dial-Up.
3. Expand the XNET Port folder.
When the Velocity host is connected to a SNIB2 via Ethernet, it treats it as an XNET port.
4. Double-click Add New XNET Port in the Components pane.
The Port Properties dialog appears:

5. Click to select the TCP/IP radio button.
The dialog changes to show the ‘IP Address’, ‘Port’, and ‘Max Attempts’ fields.

6. Check the XNET 2 Protocol checkbox, to indicate this port is using encrypted
XNET 2 protocol.

7. Click the Search button.
Velocity searches on the subnet for all SNIB2s that Velocity is not using.

If a SNIB2 is currently logged on, the search feature will not detect it.

A dialog listing all new SNIB2s appears:

Drag the slide bar over to the right to see the MAC Address column. Although a newly detected SNIB2 does not have an assigned IP address, it always has a unique MAC address.

Although a newly-detected SNIB2 does not possess an IP address, port number, or name, it should have a unique MAC address. To see this MAC address, drag the slide bar at the bottom of the dialog to the right. The MAC address for each SNIB2 is printed on a white label located on the left side of the SNIB2’s daughterboard. This label contains both a barcode and a six-digit number. This number is the last six digits
of the MAC address.

Because all SNIB2 MAC addresses start with the same six digits (00:90:C2), the label on theSNIB2 only lists the last six digits.

8. From this list, double-click the SNIB2 entry you want to configure.
The SNIB Configuration dialog appears:

9. In the ‘Name’ field, enter the name you want to assign to the SNIB2.

10. In the ‘IP Address’ field, enter the IP address for the SNIB2 connected to this Velocity PC.
In version 5.95 and later, all SNIB2s have a factory default IP address in the format 10. x.y.z where the variables are supplied from a hash of the MAC address. For versions earlier than that, you must enter the required IP address.

11. In the ‘Port’ field, enter the correct port number.
All network ports possess an address used to identify the SNIB2’s physical port address. The default Velocity port is 10001.

Consult your system administrator for the correct values for both the IP and port address.

12. Click OK. The Searching screen reappears.

13. Click OK.
The Port Properties screen reappears with the Name, IP Address, and IP Port fields populated.

14. In the ‘Max retry attempts’ field, specify the maximum number of retries this PC will attempt. Increment or decrement the value using the counter buttons.
If you get port errors, increase this number.

15. Check the ‘Enable this Port’ box if this port is currently active. Clear this box if the port is not currently active.

16.If required, click the Advanced button to access the Advanced Settings dialog to specify additional options for this port.

17. When you’re finished, click OK.
The new SNIB2 port appears in the Components pane.

If you ever need to reassign an IP address, repeat this procedure.

Configuring a Master SNIB2 in a Different Subnet


To connect a master SNIB2 via Ethernet to a host PC residing outside the host PC’s subnet, configure and assign a new IP address for the master SNIB2 on its own subnet using the SNIB2 Configuration Utility.

To configure a master SNIB2 using the SNIB2 Configuration Utility:

1.If you haven’t already done so, install the SNIB2 Configuration Utility on a PC in the same subnet as the master SNIB2 you want to configure. To do this:
a. Insert the Velocity CD or DVD in your PC’s optical drive, or go to the \Velocity folder.
b. Using Windows Explorer, navigate to the \SNIB2 folder. The file SNIB2CONFIG.EXE should be located here.

2. Double-click SNIB2CONFIG.EXE.
The SNIB2 Configuration Utility appears:

3. Select one of these radio buttons:

Search for all devices

Select this option to search for all SNIB2s on this subnet.

If a SNIB2 is currently logged on, the utility will not detect it.

Offline devices only

Select this option to search only for SNIB2s that are currently offline. It automatically eliminates all SNIB2s that are already configured for this subnet.
This is the default selection.

Search this IP Address

Select this option if you know the address of the SNIB2 you are programming, then enter the SNIB2’s current IP address in the field to the right of this radio button.
Use this option to change the IP or port address of a previously-configured SNIB2.

4. Click the Search for SNIB2 button.
The utility scans the network within the current subnet, and returns a list of all devices meeting the criterion specified by the radio button.

5. Click the ‘Devices’ pick list to display all devices currently detected by the utility, like the following example:

6. Select the correct SNIB2.

You can identify which SNIB2 you need by its MAC address (id=). The MAC address for each SNIB2 is printed on a white label located on the left side of the SNIB2’s daughterboard. This label contains both a barcode and a six-digit number. This number is the second half of the MAC address.

Because all SNIB2 MAC addresses start with the same six digits (00:90:C2), the label on the
SNIB2 only lists the last six digits.

7.Select the Get Configuration From Device button.
A list of variables specific to this SNIB2 appear in the ‘Variable Name’ window.
The three options used for SNIB2 configuration are: Device_IP_Address, Device_Port, and Device_Hostname, as shown in the following example:

8. From the ‘Variable Name’ pick list, select Device_IP_Address.
A screen like this appears:

9. In the ‘Value’ field, enter the IP address you require for this SNIB2.
A screen like this appears:

Consult your IT or Security Administrator for the proper address.

10. From the ‘Variable Name’ pick list, select Device_Port.

11. In the ‘Value’ field, enter a port address for this SNIB2.
All network ports possess an address used to identify the SNIB2’s physical port address. The default Velocity port is 10001.

12. From the ‘Variable Name’ pick list, select Device_Hostname.

13. In the ‘Value’ field, enter a name for this SNIB2.

14. Click the Send Configuration to Device button to send the information to the SNIB2.

15. Click the Search for SNIB2 button again to verify that the SNIB2 has correctly received the information.

Make sure to write down the address, port, and host name you assigned for each SNIB2.
These values are required when you configure the SNIB2 in Velocity.

If there are a lot of master SNIB2s to configure remotely, we recommend using a dedicated portable computer with SNIB2CONF already installed. This should enable the installer to do the job more rapidly. But be careful: make sure you are on-site when you do this. A SNIB2 does not retain its IP address for more than 5 minutes after being unplugged from a controller. If you are planning to program several SNIB2s from a controller then move them to a remote site, you probably won’t have time before the IP address in each SNIB2 is irrevocably lost.

After the installer has assigned the remote master SNIB2 an IP address and port, use Velocity on the host PC to identify it to the system. To do this:

1.Create a new XNET port, as specified in Steps 1–5 of “Configuring a Master SNIB2 in a Different Subnet”.

Do not use the Search button. This only works for finding SNIB2s that are currently residing on the host PC’s subnet.

2. the ‘Name’ field, enter the name you assigned to the SNIB2 using the SNIB2 Configuration Utility (Device_Hostname).

3. In the ‘IP Address’ field, enter the IP address you assigned to this device using the SNIB2 Configuration Utility (Device_IP_Address).

4. In the ‘Port’ field, enter the port number you assigned to this device using the utility (Device_Port). The default value is 10001.

5. Make sure the ‘Enable this Port’ box is checked.

6. Click OK.
This enables Velocity to find and monitor the remote SNIB2.

Resetting SNIB2 Encryption Keys


After Velocity creates the encryption keys required for secure Host-to-SNIB2 communication, it continues to use those keys. If for some reason you need to change these keys, there are several ways to do it.

Several of these techniques reset not only the SNIB2 encryption keys but also the controller.

Set SW2-1 to:

Procedures/Results

  • Cycle power on controller. SNIB2 retains encryption keys.

    Controller retains setups.

  • Press the blue Reset button on the controller until it resets.
    SNIB2 retains encryption keys. Controller loses setups.

  • Download SNIB2 firmware through Velocity. SNIB2 retains encryption keys. Controller retains setups.

  • Cycle power on controller. SNIB2 resets encryption keys.
    Controller retains setups.

  • Press the blue Reset button on the controller until it resets.
    SNIB2 resets encryption keys. Controller loses setups.

  • Download SNIB2 firmware through Velocity. SNIB2 resets
    encryption keys. Controller retains setups.

OFF or ON

Download CCM/CCMx firmware through Velocity. SNIB2 retains encryption keys. Controller retains setups.

After you have reset the encryption key to its default value (set SW2-1 to ON, recycle controller power, then reset SW2-1 to OFF), you must assign a new key so that Velocity and the master SNIB2 can talk to each other. To do this:

1.From the Velocity Administrator system tree, click and expand the DIGI*TRAC
Configuration system folder until the master SNIB2 port you require appears.

2. Right-click on the SNIB2 port and select Properties.

The Port Properties dialog appears. The master SNIB2 Properties should look like
this:

3. Check the ‘Reset encryption’ box, and click OK.
This resets and syncs the encryption key at host SNIB2.

Resetting the SNIB2 to its Factory Default Values


Starting with version 6.42 of the SNIB2 firmware, a SNIB2 board can be reset to the factory default values for its encryption keys and network settings. To reset a SNIB2 board to have an IP address based on its unique MAC address, perform the following steps:

1.Set all four DIP switches in Switch Bank 2 to ON, and set all eight DIP switches in Switch Bank 3 to OFF.

2. Cycle power to the controller containing this SNIB2 board.

3. Watch the status LEDs on the SNIB2 board, to ensure that they display the Lamp Test start up pattern, and then display the following SNIB2/CCM Synchronization pattern:

4. Turn off power to the controller.
You can then reconfigure the SNIB2 board as needed, using its DIP switches and Velocity.

Controller and SNIB2 LED Diagnostics


The SNIB2 has three pairs of LEDs that show you how the SNIB2 is communicating with the Velocity Server.


Special Light Patterns: Start Up

This consists of the following light patterns during start up.

First comes the Lamp Test.

Power-up might include the first two patterns. If you’ve just reflashed the SNIB2, the sequence starts with the ones in the box.

This pattern is followed by:

This is the SNIB2/CCM Synchronization. This pattern repeats until the CCM and SNIB2 are synchronized. This light pattern should not persist longer than four minutes if there are no memory expansion boards on the controller.


Normal Operation

This table illustrates the various light patterns displayed during normal operation for both the master and subordinate SNIB2s:

For more about the status LEDs, especially for the patterns displayed during a firmware reflash or during data trouble, refer to the SNIB2 Troubleshooting Guide included with the SNIB2.

The SNIB2 also causes certain changes to the way the controller LEDs display as shown
below:

LED Configuration

Meaning

The NET green LED is on; the NET red LED blinks intermittently depending on the amount of data being received from the host. This indicates the SNIB2 is working properly.

The exact NET LED behavior depends on the controller version.

Neither NET LED is blinking or only the NET green LED is on. In either case, the master SNIB2 is not communicating with the host.

Check both your Ethernet connection and your Velocity port configuration.

SNIB3

SNIB3 Design

SNIB3 Board

Benefits of SNIB3

Prerequisites for SNIB3

Installing and Configuring the SNIB3

Providing Surge Protection for a Master SNIB3

Preparing an Mx-Controller to Use a SNIB3

Installing the SNIB3 in a Controller without a SNIB or a SNIB2

Replacing a Controller's SNIB or SNIB2 by a SNIB3

SNIB3 Network Configuration Options


Using Ethernet
Using Serial RS-485
RS-485 Cabling for SNIB3s
Using NET*MUX4s with SNIB3s

Setting the DIP Switches on a SNIB3

Configuring a SNIB3


Overview of Network Subnets 
Using Velocity to Configure a SNIB3 on the Same Subnet
Configuring a SNIB3 on a Different Subnet

Resetting SNIB3 Encryption Keys

Resetting a SNIB3 to its Factory Default Values


Controller and SNIB3 LED Diagnostics

Special Light Patterns at Startup
Light Patterns for Normal Operation
  • No labels