Live Search |
---|
Table of Contents |
---|
When installed, the SNIB, SNIB2, or SNIB3 expansion board enables a DIGI*TRAC or Mx controller to be programmed, monitored, and controlled from a properly-configured IBM-compatible host PC running the Velocity software. Communication is secured by Hirsch’s proprietary Hirsch Encrypted Standard (HES) protocol SCRAMBLENET network.
The SNIB3 is compatible with the SNIB2, but not with the original SNIB.
SNIB
The SNIB provides both RS-232 and RS-485 SCRAMBLE*NET ports. If you need to connect the host to the master SNIB via RS-485, you can only use the SNIB; otherwise, you have a choice of either SNIB or SNIB2. An example of the SNIB is shown in Figure 1-1.
When installed, the SNIB, SNIB2, or SNIB3 expansion board enables a DIGI*TRAC or Mx controller to be programmed, monitored, and controlled from a properly-configured IBM-compatible host PC running the Velocity software. Communication is secured by Hirsch’s proprietary Hirsch Encrypted Standard (HES) protocol SCRAMBLENET network.
An optically isolated RS-232 port is provided on the original SNIB and the SNIB2.
An optically isolated RS-485 port (required for multi-drop or long hardwired connections) is provided on the SNIB, the SNIB2, and the SNIB3.
An RJ-45 Ethernet port (which requires a host-to-master controller TCP/IP connection) is provided on the SNIB2 and the SNIB3.
The SNIB3 is compatible with the SNIB2, but not with the original SNIB. The M1N controller does not require the addition of a SNIB or SNIB2 because it already has SNIB circuitry integrated into its main board. The Mx controller’s main board includes SNIB2 functionality on a daughterboard, which can be removed to enable using a SNIB3.
Info |
---|
RS-232 is best for modems or local PCs. (It is not available on the SNIB3.) |
The following subsections provide installation instructions for the “SNIB”, the “SNIB2” , and the “SNIB3”.
SNIB Board
Figure 1-1: SNIB Board
An example of the possible SNIB connections is shown in Figure 2-23.
SNIB Connections
Figure 2-2: SNIB Connections
SNIB Cabling Distance
The power and data lines are fully isolated from the controller, providing immunity from transients and common-mode ground voltages between the SNIB-connected controller(s) and a host PC. Maximum SNIB cabling lengths are shown in Table 1-1:
Table 1-1: SNIB Cabling Distances
Port Type | Maximum Cable Length in feet (meters) |
---|---|
Ethernet (CAT5, CAT6) | 328 (100) |
RS-485 | 4000 (1220) |
RS-232 | 50 (15) |
For a single controller network, connect to the S*NET via either an RS-485 or RS-232 port. If connecting more than one controller on the network and the first controller is within 50 feet (15 meters) of the Host PC, connect the PC to the first controller via the RS- 232 connector and the rest of the controllers to the RS-485 S*NET connector on the first controller.
Alternatively, simply connect to the RS-485 connector and daisy-chain the wire to the multiple controllers. The M1N does not require a SNIB to network because SNIB circuitry with both RS-232 and RS-485 connectors is embedded on the controller board.
SNIB Design
When installed in a DIGI*TRAC Controller, the SNIB enables the Controller to be programmed, monitored, and controlled from a PC. For a one-controller network, you can connect to either the SNIB’s RS-485 connector (up to 4000 feet/1220 meters) or the RS-232 connector (up to 50 feet/15 meters).
If you are connecting to more than one controller on the network and the first controller is within 50 feet (15 meters) of the Host PC, you can connect the PC to the first controller via the RS-232 connector and the rest of the controllers to the RS-485 S*NET connector on the first controller. Alternatively, simply connect to the RS-485 connector and daisy-chain the wire to the multiple controllers.
A SNIB board must be installed in every controller you plan to connect to the network
Figure 1-3: The Original Secure Network Interface Board (SNIB)
Figure 1-4 provides examples of how the SNIB can be used to connect two controllers to a host PC using either an RS-232 or RS-485 connection.
Figure 2-65: Host PC to SNIB Wiring Examples
Installing The SNIB
This section includes installation instructions for the original SNIB.
SNIB Setup
The wiring and settings of the SNIB are shown in Figure 1-5.
Figure 1-5: Secure Network Interface Board (SNIB)
MD1 - 2
Because the M1N has integrated SNIB circuitry, the DIP switches are located on the controller itself, to either side of the network connections. (Refer to Figure 2-1 on page 2-4.)
Model 1N Design
The M1N has one heavy-duty door relay with associated line module input for supervision and door functions. This relay is capable of powering two keypads. The M1N also has three additional inputs for door contacts and alarm sensoring and four control relays to monitor and activate various relay circuits. Relay 4 can double as an alarm relay but it is not dedicated to that task.
In addition, the M1N includes an integrated SNIB for direct connection via either RS-232 or RS-485 to a SCRAMBLE*NET network, a keypad connector, and a printer port.
The M1N is shown in the below Figure:
Set these switches as you would a normal SNIB. There are no SNIB jumpers on the M1N.
The board has two jumpers, MD1 and MD2. Both are explained here:
There are also a number of DIP switches on the SNIB which can configure the board.
SW1/SW2
The last controller on any network cable run, or any single controller connected to a modem through the RS-232 port, must have its terminating resistors set to ON. To do this, set both SW1 and SW2 on switch bank S1 to ON.
SW1 | OFF | This SNIB is not the last one on the network cable. (Default) |
---|---|---|
ON | This SNIB is the last one on the network cable. |
SW3/SW4
The switch bank at S2 has 9 switches which configure a number of properties for the SNIB. SW3 determines the Modem Mode.
SW5/SW6
SW5-6 determines the SNIB’s baud rate. The rates you can select depend on the SNIB version you have.
Older (pre-1998) SNIBs have a ‘16450’ or ‘16C450’ serial port. Look for ‘16450’ or ‘16C450’ on the big rectangular chip. This works with 2400 and 9600 bps and may work with 19200 bps as well (depending on the SNIB date). DIP switch settings for this are:
SW5 | ON | OFF (default) | OFF | ON | ON |
---|---|---|---|---|---|
SW6 | OFF | OFF (default) | ON | OFF | ON |
Baud Rate | 19,200 | 9600 | 2400 | 1200 (old) | 300 (old) |
Current production SNIBs have a ‘16550’ or ‘16C550’ serial port processor. Look for ‘16550’ or ‘16C550’ on the big rectangular chip. This configuration should work on all three baud rates.
SW5 | ON | OFF (default) | OFF | ON |
---|---|---|---|---|
SW6 | OFF | OFF (default) | ON | ON |
Baud Rate | 19,200 | 9600 | 2400 | 300 |
DIGI*TRAC 7.0 supports 19,200 bps SCRAMBLENET. This means that while 9600 and 2400 are supported by both the 1200 and 300 baud rates are supported by the older SNIB.
To do this, set the SNIB DIP switch 5 (the third one on the second set of dip switches) to ON, and set the Test Tool or equivalent host software (or Xbox) to 19200 bps
All Controllers on the network must have the same baud rate setting.
If you’re using an Xbox with your controllers, the SNIB baud rate on all controllers must match the XBox’s ‘Net Speed’ baud rate. Current production XBoxes only allow 2400 or 9600 bps baud rates. When changing baud rates, you must stop and restart all controllers on the network as well as all XBoxes.
SW7 - SW12
SW7-12 are used to set the Network Address. Each switch represents a binary value in this way:
Switch | 7 | 8 | 9 | 10 | 11 | 12 |
Value | 32 | 16 | 8 | 4 | 2 | 1 |
The only exception to this scheme is Network Address 64 where SW7-12 are all OFF. (This is currently not supported by SAM.) Table 1-2 provides a complete list of all network addresses and their corresponding switch setup: